Anticoagulants and antiplatelet drugs

Classification

Anticoagulants

Parenteral

<table>
<thead>
<tr>
<th>Anticoagulants</th>
<th>UFH</th>
<th>LMWH</th>
<th>Enoxaparin</th>
<th>Tinzaparin</th>
<th>Dalteparin</th>
<th>Certoparin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heparin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heparinoids</td>
<td>Danaparoid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirudins</td>
<td>Lepirudin</td>
<td>Bivalirudin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentasaccharide</td>
<td>Idraparinux</td>
<td>Fondaparinux</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Oral

<table>
<thead>
<tr>
<th>Warfarin</th>
<th>Acenocoumarole (= nicoumalone)</th>
<th>Phenindione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor Xa inhibitors</td>
<td>Rivaroxaban</td>
<td></td>
</tr>
<tr>
<td>Thrombin inhibitors</td>
<td>Ximelagatran (Exanta®)</td>
<td>Dabigatran (Pradaxa®)</td>
</tr>
</tbody>
</table>

Antiplatelet drugs

<table>
<thead>
<tr>
<th>Aspirin</th>
<th>Dipyridamole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thienopyridines</td>
<td>Clopidogrel</td>
</tr>
<tr>
<td>Ticlopidine</td>
<td></td>
</tr>
<tr>
<td>GP IIb/IIIa antagonists</td>
<td>Abciximab</td>
</tr>
<tr>
<td>Eptafibatide</td>
<td>Tirofiban</td>
</tr>
</tbody>
</table>

Thrombolytics

For acute arterial thromboembolism – see IHD.

Generally speaking!

- **Anticoagulants**
 - Esp. useful in prevention/treatment of venous occlusion
 - More effective
- **Antiplatelet drugs**
 - Esp. useful in arterial occlusions (?because arterial thrombi are platelet-rich)
 - Less likely to cause haemorrhage

Parenteral anticoagulants

UFH

Naturally occurring mammalian mucopolysaccharides.
Molecular weight ~30kD (mean 12kD)
Indications

Therapeutic (because of rapid onset of action)
- DVT/PE
- ACS

Prophylactic
- DVT/PE prophylaxis
 - Surgery, esp. orthopaedics
 - Immobile patients
- Extracorporeal circuits (cardiopulmonary bypass, haemodialysis)

Mechanism of action

Pentasaccharide sequence: binds to natural antithrombin-III and accelerates breakdown of factor Xa 1000-fold.

18+ saccharide sequence: also accelerates factor IIa breakdown by similar mechanism

LMWHs have shorter chain lengths and accelerate factor Xa breakdown more (ca. 3-fold)

Dosing

Prophylaxis
- Low dose e.g. 5,000 units SC 8 or 12 hourly
- Monitoring not required (APTT largely unaffected)

Treatment
- High dose
 - Loading bolus (5,000U) plus continuous infusion (30,000-40,000U over 24 hours, or 25U/kg/h)
 - Continue until fully anticoagulated with warfarin

Monitoring
- APTT ratio (intrinsic + common systems) at 4-6h after starting
 - Repeat every 4-6h with dose adjustment until APTT ratio is 1.5-2.5 times control
 - If stopped, effect subsides in 2-3h

Adverse effects
- Bleeding
 - Reversal: 1mg protamine for 100IU UFH if within 15min of heparin, less later
- HIT (2-3%)
 - Must monitor platelets from day 5
 - UFH>>LMWH
- Osteoporosis if more than 4 months treatment
 - Esp. in pregnant women who had to swap warfarin for heparin
Contraindications
As NSAIDs, plus previous HIT

LMWH

LMWHs are produced by chemical (e.g. enoxaparin) or enzymatic (e.g. tinzaparin) depolymerisation of UFH. Molecular weight 2-10kD (mean 5kD).

LMWH vs. UFH - theory
The biological activity of heparins is related to fractional molecular weight:
- < 5.4kD mainly anti-Xa activity
- > 5.4kD both anti-Xa and anti-IIa activity

I.e. anti-IIa activity is dependent on chain length

Pros
- Shorter chains cleared more slowly: UFH t\(_{1/2}\) = 2-3h, enoxaparin t\(_{1/2}\) = ca. 4h (this is a con in renal failure)
- Reduced binding to plasma proteins (which compete with and reduce inhibition of antithrombin)
- Not bound by PF4 from activated platelets
- Bioavailability of fractionated heparins from SC administration is considerably higher

→ more predictable anticoagulant activity for LMWHs; no need for IV infusion (more convenient for patient and saves on nursing time – but note prophylactic heparin can be given SC, too) and no need to monitor APTT (saves on lab time and costs)

- Lower incidence of HIT
- Lower incidence of osteoporosis
- Hope of lower incidence of bleeding at equivalent antithrombotic dose has not borne out

Cons
- Cannot monitor APTT – need factor X ratio (expensive; no need if average body mass, n crea, short duration of use)
- Incompletely reversed by protamine (just 20%)
- Expensive (10x)

LMWH vs. UFH - practice
Fractionated heparins are taking over from unfractionated heparins for most of the accepted indications.

Superior efficacy proven for
- Treatment of DVT/PE
- ACS (ESSENCE trial)
- Orthopaedic lower limb surgery

But also used in
- DVT/PE prophylaxis
- Extra-corporeal circuits (unlicensed indication)

Note
- The different methods of preparation of LMWHs mean that there are important differences in molecular weight distribution. It is not possible to extrapolate trial data between different preparations.
- Only enoxaparin is now widely used

Heparinoids

Lower degree of sulfation

Possible indications
Available on named-patient basis
- DVT prophylaxis in general and orthopaedic surgery
- Severe HIT if no evidence of cross-reactivity (rare: 10%)

Hirudins

Specific thrombin inhibitors

<table>
<thead>
<tr>
<th>Factor IIa inhibitors</th>
<th>Don’t bind plasma proteins or PF4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Don’t rely on AT3</td>
</tr>
<tr>
<td></td>
<td>No specific antidote</td>
</tr>
</tbody>
</table>

Indication

Lepirudin: licensed for HIT type II

Pentasaccharides

New, hence still expensive and lack of experience.

Idraparinux given SC once a week; being evaluated in AF (AMADEUS trial)

Advantages

- Long t½ (15-20h) compared even to LMWH
- No HIT risk – does not bind PF4 or platelets

Oral anticoagulants

Warfarin

Wisconsin Alumni Research Foundation coumARIN (patent holder)

Mechanism of action

Structurally similar to vitamin K. Competitively inhibits vitamin K-dependent γ-carboxylation of factors II, VII, IX, X and proteins C/S.

Orally bioavailable but the onset of anticoagulation is delayed until γ-carboxylated clotting factors available in the circulation are depleted (about 72h); hence heparinise in acute situation.

Inactivated by hepatic metabolism.

Monitoring

By INR; can be monitored while on heparin

Issue National Anticoagulant Book, advice to show to all doctors and dentists

Target INR

- 2.5 DVT/PE, AF, cardioversion, DCM, mural thrombus, rheumatic heart disease
- 3.5 recurrent DVT/PE, mechanical heart valves, antiphospholipid syndrome
Adverse effects
- Thrombosis, esp. if protein C/S deficient
- Bleeding, esp. gut and brain
- Pregnancy
 - Early pregnancy: fetal warfarin syndrome (phocomelia, chondrodysplasia)
 - At term: placental abruption, excessive haemorrhage, neonatal hypoprothrombinaemia
- Breastfeeding OK

Management of bleeding/↑↑INR
Recommendations of British Society for Haematology
- Major bleeding: Vitamin K 5mg slow IV, prothrombin complex concentrate (FII/VII/IX/X = Beriplex®) 50U/kg or FFP 15ml/kg if not available
- INR<6: Reduce dose or stop and restart when INR<5
- INR 6-8: Stop and restart when INR<5
- INR>8: Stop and restart when INR<5
 - If other risk factors for bleeding: Vitamin K 0.5mg slow IV or 5mg PO,
 for partial reversal give 0.5-2.5mg of IV preparation PO

Vitamin K takes at least 6h to have any effect and can make subsequent re-warfarinisation unpredictable.

FFP vs. PPC
- FFP contains insufficient factors to fully reverse warfarin
 - 70kg man would require 2.5l FFP to fully reverse
 - INR misrepresents degree of reversal
- PPC
 - Easier, faster, not group dependent, and even lower risk of viral transmission
 - Main risks: thrombosis, DIC
 - Also give vitamin K

Interactions
If a drug is added that can affect warfarin action, more frequent monitoring is required
- Reduced absorption – cholestyramine or similar resins
- Reduced protein binding – hypoproteinaemic states e.g. nephrotic syndrome, drugs e.g. NSAIDs
- Altered clearance – P450 induction/inhibition
- Altered vitamin K availability – altered food intake, antibiotic-induced reduction in gut-derived vitamin K, laxatives
- Altered levels of clotting factors – reduced in hypermetabolic states e.g. hyperthyroidism; increased in pregnancy
- Augmented bleeding tendency – in combination with antiplatelet agents e.g. NSAIDs

Duration of treatment
- DVT/PE (akin to BTS guidelines)
 - Temporary risk factor 4-6w
 - First idiopathic 3-6m
 - Recurrent May be lifelong
 - Associated with pro-thrombotic state e.g. protein C/S deficiency Lifelong
- AF Lifelong
- Cardioversion 1m prior and 1m after
- Large dilated heart/cardiac aneurysm Lifelong

Surgery in patients receiving warfarin
- Withdraw 3-5 days pre-operatively; replace with low dose heparin
- Resume 1-3 days post-operatively

Dental extractions
- Omit 1-2 days prior to surgery

Acenocoumarol, phenindione

1 BTS multicentre trial ongoing

5/8
Use if warfarin intolerant.

Ximelagatran (Exanta®)

Oral thrombin inhibitor with predictable pharmacokinetics. Taken bd, metabolised to melagatran. May be a useful alternative to warfarin (SPORTIF trials showed similar efficacy in AF)

Removed from sale in 2006 due to hepatotoxicity

Antiplatelet drugs

Clinical indications include

- **CNS**
 - Prophylaxis of CVA/TIA
 - Warfarin preferred if AF/LA dilatation/mitral valve disease/LV dysfunction
 - Acute ischaemic CVA/TIA
- **Heart**
 - Prophylaxis of coronary artery disease
 - ACS
 - Following PTCA/stenting/CABG
 - AF
- **Peripheries**
 - Peripheral vascular disease

Aspirin

Mechanism of action

cAMP plays important role in platelet aggregation (high levels inhibit and low levels promote)

- Adenylate cyclase activity (production)
 - Stimulated by prostacyclin (PGI₂) from endothelium
 - Inhibited by thromboxane (TXA₂) from platelets
- PDE activity (degradation)

Inhibits cyclo-oxygenase by enzyme acetylation, irreversible and thus lasts life of platelet (~10 days)

Thus blocks formation of prostacyclin and thromboxane
Ideally want to block thromboxane formation but not prostacyclin; this occurs at a low dose of aspirin. Why?
- Endothelium has synthetic capacity, platelets don’t (anucleate)
- Extensive pre-systemic hydrolysis

The lower the dose, the greater the differential effect
Low-dose aspirin still affects bleeding time
<100mg takes several days for effect, hence 300mg loading dose in acute conditions

Dipyridamole

Mechanism
Reversible inhibition of platelet PDE
Effect is potentiated by aspirin

Indications
Infrequently used
- Adjunct to PO anticoagulation for thromboembolic prophylaxis in prosthetic heart valves
- MR preparation licensed for secondary prevention in ischaemic CVA/TIA
 - European Stroke Prevention Study 2 (1996): low dose aspirin (25mg bd) plus dipyridamole (200mg bd) more effective than either agent alone for secondary prevention of stroke (end point stroke/death)
 - Risk reduction of 36% for stroke or death for combination compared to placebo
 - This combination is now available Asasantin retard
 - Used in high risk stroke patients

Adverse effects
Provokes myocardial ischaemia (used in chemical stress testing) \(\xrightarrow{\text{CI}}\) CI in IHD

Thienopyridines

Prodrugs – activated in vivo
ADP antagonists at P2Y receptors
ADP is released by platelets when they adhere to collagen and provokes aggregation

Clopidogrel
Expensive, but more effective than aspirin
Cost implications potentially huge (>£1 vs. 1p per tablet), may cost >£100k to prevent an event

Indications
- Aspirin intolerance
- ACS/acute MI
 - NSTE: CURE\(^2\) (clopidogrel and aspirin vs. aspirin alone)
 - More effective at event reduction (9.3% vs. 11.4% reached end-point, \(p<0.001\))
 - Higher risk of major bleed (3.7 vs. 2.7%, \(p=0.001\)), but no significant difference in risk of life-threatening bleed (2.1% vs. 1.8%, \(p=0.13\))
 - STE: CLARITY-TIMI 28\(^3\)
- Recent MI/CVA, symptomatic PVD: CAPRIE\(^4\) (clopidogrel vs. aspirin)
 - More effective at event reduction (absolute risk reduction 3.8%)
 - Most benefit in PVD group
- Recent TIA/CVA (and additional cardiovascular risk factor): MATCH

Ticlopidine
Now rarely used due to adverse effects: neutropenia (1%, reversible), TTP (<0.02% but 50% mortality), diarrhoea (20%), intrahepatic cholestasis

GP IIb/IIIa antagonists

Central role of GP IIb/IIIa (integrin)

![Diagram of platelet aggregation](image-url)

All given IV; should be used by specialists only

Indications (NICE guidance)
- PTCA
 - In unstable angina and NSTE MI, if PTCA indicated but delayed
 - In diabetics
 - Complex procedure

Eptafibatide/tirofiban given early on; only abciximab is licensed as an adjunct to PTCA

3 distinct chemical groups:

Monoclonal antibody (abciximab)
- Slow dissociation from the receptor (antiplatelet effect last for ~10s hrs after administration) and immunogenic
- Beneficial in
 - Unstable angina (EPILOG-Stent) if not responding to normal Rx and scheduled for PTCA
 - High-risk angioplasty (EPIC)
- Low risk of thrombocytopenic haemorrhage – can reverse by platelet administration
- Use only once

Peptide antagonist (eptafibatide)
- Rapid receptor binding/dissociation and high systemic clearance

Non-peptide antagonists (tirofiban)
- Developed with a view to PO administration, but have failed to show clinical efficacy by this route