Ischaemic heart disease

Angina

= clinical syndrome characterised by central chest tightness radiating to the arms and neck, due to myocardial ischaemia

Angina may be

- Stable
 - Infrequent
 - Predictable exercise threshold (other precipitants = emotion, cold weather, heavy meals)
 - Relieved by GTN

- Unstable (part of ACS spectrum)
 - New onset (≥ CCS\(^1\) class III)
 - At rest
 - Increasing: more frequent (esp. crescendo), longer, lower threshold (change by ≥ 1 CCS class to ≥ CCS class III)

- Vasospastic/Prinzmetal’s (rare)
 - Due to coronary artery vasospasm
 - Unpredictable in pattern of onset
 - Atypical drug response – CCBs often best

- Decubitus (rare)
 - Due to ↑LVEDP, or associated with cold sheets, dreaming, or coronary spasm during REM sleep

Myocardial oxygen requirements are determined by

- Preload venous return – remember Starling’s Law
- Heart rate
- Afterload aortic impedance

Angina can thus be relieved and prevented by:

- Reducing myocardial O\(_2\) demand
 - Reduce preload
 - Control heart rate
 - Reduce afterload
- Improving myocardial O\(_2\) supply
 - Dilate coronary arteries

Also consider Rx under the headings

- Anti-thrombotics: aspirin, enoxaparin, GP IIb/IIIa antagonists
- Anti-ischaemics: nitrates, \(\beta\)-blockers, CCBs, nicorandil

ACS

Comprises unstable angina, NSTEMI/NQWMI and STEMI/QWMI

\(\beta\)-blockers

\(^1\) Canadian Cardiovascular Society

- Grade I: only on strenuous or prolonged exertion
- Grade II: on two flights of stairs
- Grade III: on walking one block on the level (requires intervention)
- Grade IV: at rest (requires urgent intervention)
Mechanism

In heart, β_1 predominates (sympathetic nerve endings), also some β_2 (circulating CAs) – thus β-blockers are

- -vely chronotropic
- -vely inotropic

- \downarrowafterload
- Probably \downarrowpreload by reducing plasma volume through unknown mechanism

Cardioselectivity

Both coronary and peripheral arteries have β_2 receptors that mediate dilatation and this forms the rationale for using ‘cardioselective’ β_1 blockers in IHD and HT.

But: this does not appear to be significant in practice, in that cardioselective agents are no better at reducing blood pressure and no better at preventing angina – why is this?

Even highly β_1 selective agents (bisoprolol, atenolol) are CI in patients with asthma.

Calcium channel blockers

Mechanism

- \downarrowafterload

- Dilatation of coronary arteries
- \downarrowinotropic
- \downarrowchronotropic (non-DHPs)

CCBs are the drugs of choice for coronary artery vasospasm where β-blockers are CI (esp. non-selective agents).

Nitrates

Preparations

GTN

- 100% first-pass metabolism – cannot give orally
- $t_{1/2} = 2$min; rapidly converted to di- and mononitrates

Routes

- Spray – short shelf life, but cheap
- Buccal/sublingual tablets – slow dissolution over 2h, akin to IVI
- Patches – convenient/inconvenient, might forget to remove at night, CI in diathermy

ISMN

- Longer $t_{1/2}$

Routes

- Oral

Mechanism

Act by generating nitric oxide (EDRF)

\Rightarrow reduce preload by venodilatation

\Rightarrow dilate coronary arteries

Contraindications

- HOCM
- AS
- Constrictive pericarditis
- Closed-angle glaucoma

Adverse effects

- Thumping headache (tolerates out in about 3 days)
- Flushing
- Postural hypotension
• Requires drug-free period to prevent tachyphylaxis
 o 6h/24h, best at night when resting anyway
 o E.g. Imdur 60mg od and worn off by bed time

• No proven effect on survival (GISSI-3, ISIS-4), but no research impetus either

Nicorandil

Most recently introduced agent; used as 3rd line instead of nitrate or as 4th line add on.

Mechanism

- Potassium channel activator (arterial dilatation)
- Also has hybrid nitrate activity (mostly venous dilatation)
- May have antiarrhythmic action

IONA trial

- Significant reduction in incidence of major coronary events and all cardiovascular events
- In view of almost universal concomitant nitrate use, these benefits are likely to be conferred by nicorandil’s unique potassium channel opening and preconditioning properties

Adverse effects

- Headaches (less likely to tolerate out than with nitrates)
- Flushing
- Postural hypotension

PTCA

Indications

- Emergency
 - Failed medical Rx, incl. failed thrombolysis (STE not decreased by >50% at 90min post thrombolysis)

- Elective
 - Not suitable for CABG/previous CABG
 - Stenosis of ≤2 vessels

Complications

- Emergency CABG (<3%)
- MI (<2%)
- Death (<0.5%)
- Restenosis (20-30% within 6m, lower with stenting ± brachytherapy)

CABG

IMA grafts markedly superior to SV ones (long-term patency and amenability to PTCA)

Indications

- Disease
 - Vessels: 3, 2 with severely affected proximal LAD, left main stem
 - Lesions: multiple severe stenoses, distal vessel disease
- Failed PTCA

CABG vs. PTCA

- Better Sx control and less further interventions
- Longer recovery time and inpatient stay
Treatment of stable angina

Aim: relieve symptoms, prevent progression

General principles
Full Hx+Ex
- Assess symptoms
- Assess risk factors
- DH of e.g. α-blockers, TCAs

Ix
- Bloods
 - FBC – anaemia?
 - UE – RF?
 - TFT – hyper/hypo?
 - Glu, lipids
- ECG – arrhythmia, ischaemia
- Consider ETT
- Consider angio

Rx
- Treat other contributing causes, e.g. anaemia, arrhythmia
- GTN
- Aspirin 75mg
- Statin and risk factor modification

Aim to prevent or reduce frequency of attacks to a minimum on prophylactic drug therapy; GTN as ‘rescue’ for ‘breakthrough’ angina
- Add β-blocker
- Add Ca-channel blocker (DHP; can use NDHP if β-blocker CI)
- Consider nicorandil
- Consider invasive Ix (angio) + Rx (PTCA, CABG)

Indications for referral
- Diagnostic uncertainty
- New angina of sudden onset
- Angina uncontrolled by drugs
- Recurrent angina after PTCA/CABG

Treatment of NSTE ACS

Treatment
- Constant ECG monitoring for rhythm/ischaemia/infarction
- Bed rest
- MONA incl. IV nitrates + enoxaparin 1mg/kg bd
 - If IV nitrates required for >3d, switch to IV ISDN (Isoket 0.05% 25mg/50ml, 4-20ml/h)

Addenbrooke’s high risk criteria (need 3/5; approximate to ESC high risk criteria)
- Patient history (age, DM, previous MI/PTCA/CABG)
- Recurrent ischaemia (symptoms)
- Dynamic ΔST
- ↑trop
- Impaired LV function (clinical or echo), major arrhythmia (VT/VF)

Stratify
- If high risk: consider GP IIb/IIIa antagonist (e.g. tirofiban) and in-patient cardiology referral for potential angio ± PTCA/CABG
 - 400ng/kg/min for 30min ‘bolus’, followed by 100ng/kg/min for a maximum of 108h
 - CIs are similar to those for thrombolysis
 - Monitor Hb and platelets before, after 6h, then daily
• If low risk: await 2nd trop, treat as high risk if elevated

Symptoms settling and low risk:
• ↑oral Rx, wean off GTN infusion when stable on oral Rx
• Stop heparin when pain-free for 24h
• Gradual mobilization
• 1/52 GP review
• Out-patient ETT and cardiology review

Treatment of STE ACS

Treatment as for NSTEMI, plus thrombolysis

Thrombolysis
Aim for door-to-needle time of 30min
Boosts recanalisation rate from 15% to 70%

Indications
• Typical pain at rest within 12 hours of presentation at any age
• 12-24 hours if pain continues
• Must have
 o ≥1mm STE in ≥2 chest leads
 o ≥2mm STE in ≥2 limb leads
 o New LBBB
 o True post. MI

Agents

- Streptokinase
 o 1.5 million U/100ml 0.9% NaCl over 60min
 o First choice
 o Little clot selectivity – little binding to fibrin, has similar affinity for free or bound plasminogen

- tPA
 o 10U twice, separated by 30min (supported by RAPID 1)
 o Indicated if
 - Patient under 75 years with anterior MI and within 6h of onset of chest pain
 - SK more than 5 days or under 1 year
 - Previous anaphylaxis to SK
 - Recent streptococcal infection
 - Cardiogenic shock (SBP<80mmHg with clinical features of low CO – discuss with cardiology SpR)
 - Low risk intracerebral bleed
 o Clot selectivity
 - Binds to fibrin
 - Activates plasminogen bound to fibrin >100-fold faster than circulating plasminogen
 - Levels of tPA during thrombolysis are 30-300x > physiological levels – hence some loss of clot selectivity
 o INJECT trial: at least as effective as streptokinase
 o GUSTO trial: better than streptokinase but effect small (14 vs. 10% ↓ in 30-day mortality)

Contraindications to thrombolysis

- Bleeding tendency
 o General
 • Congenital
 • Acquired (INR>2.5)
 o Local
 • STREPT
Information given to patients before thrombolysis
Must discuss risks and benefits with patient, and document this.
- They are having a heart attack, but effective treatment is available
- The heart attack is due to blockage of an artery in the heart by clot, and thrombolysis can usually dissolve that clot
- The most important side-effect is bleeding severe enough to require transfusion (0.3%)
- The increased risk of haemorrhagic stroke is more than offset by the reduced risk of ischaemic stroke (overall risk of stroke with streptokinase and aspirin is 0.6%)
Overall the benefits far outweigh the risks.

Adverse effects
- Haemorrhage (more likely with tPA): stop, consider FFP/cryoprecipitate
- CVA: stop, CT
- Reperfusion arrhythmias (more likely with streptokinase): stop, Rx arrhythmia as usual, restart
- Hypotension (more likely with streptokinase): stop until BP recovers, restart slowly; if persistent treat conventionally but try to restart
- Rigors: stop, recommence slowly
- Allergic reaction: stop, Rx as usual, restart if possible

Other indications for thrombolysis
- Arterial thrombosis, both peripheral and massive PE (in latter, no evidence to support central over peripheral thrombolysis)
- Vasoocclusive CVA (under trial)

β-blockade
Indications as for thrombolysis
- Atenolol 50mg PO after 15min, followed by further 50mg after 12h
- If unable to take PO: atenolol 5-10mg by slow IV injection after 1h

Contraindications
- HR<50
- SBP<100
- Usual β-blocker CIs

Consider PTCA
- QMC criteria: persistent symptoms and STE 90min after commencing thrombolysis
- 80% suitable
- 3% occlude acutely, 30% restenose within 3m
- Stenting: esp. in dissection flaps, diabetics, saphenous vein grafts

Secondary prophylaxis
As under stable angina; always give β-blocker or CCB
Consider ACE-I on day 2
Indications
- Anterior QWMI
- Heart failure
- Impaired LV function on echo (LVEF<40% on MUGA - SAVE study)
• 48h bed rest
• Daily Ex
• DVT/PE prophylaxis; consider warfarinisation in large anterior MIs (risk of mural thrombus)
• ETT
 o Inpatient if thrombolysed but no significant ↑trop
 o Outpatient otherwise unless CI
• Cardiac rehabilitation
 o 1m off driving and sex
 o 2m off work
• Review at 5w for Sx

Inotropes

Dobutamine
• β₁ > β₂; less α activity than dopamine; no renal vasodilator effect
• At higher doses β₂ action predominates causing hypotension
• First line in cardiogenic shock: 5-20μg/kg/min
• Renal clearance
• Adverse effects: tachyarrhythmias, hypokalaemia

Dopamine
• Natural precursor of NorAdr
• <5μg/kg/min: ‘renal dose’, acts on D₁ and D₂ receptors, ↑renal/splanchnic/cerebral/coronary blood flow, not necessarily ↑UO, controversial as no impact on outcome in ARF, may cause arrhythmias and GI ischaemia
• 5-20μg/kg/min: α + β₁ stimulation
• >20μg/kg/min: increasing α stimulation – starts to resemble NorAdr (increase in afterload – probably undesirable)
• Renal clearance
• Adverse effects: tachyarrhythmias, hypokalaemia

Adrenaline
• Second line in cardiogenic shock (more potent than dobutamine): 0.1-1μg/kg/min
• Bradycardia unresponsive to atropine: 2-10μg/min
• Predominant β-agonist at low dose, α-agonism at high dose

Noradrenaline
• Vasodilatory shock in the absence of hypovolaemia
• Alternative to epinephrine for cardiogenic shock
• Start at 0.1μg/kg/min
• Risk of excessive vasoconstriction and organ hypoperfusion/↑afterload

Isoprenaline
• Reduces peripheral resistance, diverting blood away from vital organs, e.g. kidneys
• Limited value

<table>
<thead>
<tr>
<th></th>
<th>β₁</th>
<th>β₂</th>
<th>α₁</th>
<th>α₂</th>
<th>D₁</th>
<th>D₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low dose</td>
<td>++</td>
<td>+</td>
<td></td>
<td></td>
<td>±</td>
<td>-</td>
</tr>
<tr>
<td>Moderate dose</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>High dose</td>
<td>++</td>
<td>+(+)</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>-</td>
</tr>
<tr>
<td>NorAdr</td>
<td>++</td>
<td>-</td>
<td>+++</td>
<td>+++</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoprenaline</td>
<td>+++</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dopamine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low dose</td>
<td>±</td>
<td>-</td>
<td>±</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>Moderate dose</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>++(+)</td>
<td>+</td>
</tr>
<tr>
<td>High dose</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
<td>+</td>
<td>++(+)</td>
<td>+</td>
</tr>
<tr>
<td>Dobutamine</td>
<td>++</td>
<td>+</td>
<td>±</td>
<td>?</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>